Lectures on Closed Geodesics Softcover Repri Edition Contributor(s): Klingenberg, W. (Author) |
|||
ISBN: 3642618839 ISBN-13: 9783642618833 Publisher: Springer
Binding Type: Paperback - See All Available Formats & Editions Published: October 2011 Click for more in this series: Grundlehren Der Mathematischen Wissenschaften |
Additional Information |
BISAC Categories: - Mathematics | Geometry - Differential - Mathematics | Essays |
Dewey: 516.36 |
Series: Grundlehren Der Mathematischen Wissenschaften |
Physical Information: 0.52" H x 6.14" W x 9.21" L (0.78 lbs) 230 pages |
Descriptions, Reviews, Etc. |
Publisher Description: The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo- metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres- ponding periodic orbit in the geodesic flow is infinitesimally stable. |
Customer ReviewsSubmit your own review |
To tell a friend about this book, you must Sign In First! |