Low Price Guarantee
We Take School POs
The Statistical Theory of Shape 1996 Edition
Contributor(s): Small, Christopher G. (Author)

View larger image

ISBN: 0387947299     ISBN-13: 9780387947297
Publisher: Springer
OUR PRICE: $104.49  

Binding Type: Hardcover - See All Available Formats & Editions
Published: August 1996
Qty:

Annotation: This book provides a comprehensive coverage of the statistical theory of shape. The shape of a data set can be defined as the total of all information invariant under translations, rotations, and scale changes to the data. Over the last decade, shape analysis has emerged as a promising new field of statistics with applications to morphometrics, pattern recognition, archeology, and other disciplines.

Click for more in this series: Springer Series in Statistics
Additional Information
BISAC Categories:
- Mathematics | Geometry - Differential
- Mathematics | Probability & Statistics - General
Dewey: 516.36
LCCN: 96013587
Series: Springer Series in Statistics
Physical Information: 0.74" H x 6.29" W x 9.68" L (1.05 lbs) 230 pages
Features: Bibliography, Illustrated, Index, Maps
 
Descriptions, Reviews, Etc.
Publisher Description:
In general terms, the shape of an object, data set, or image can be de- fined as the total of all information that is invariant under translations, rotations, and isotropic rescalings. Thus two objects can be said to have the same shape if they are similar in the sense of Euclidean geometry. For example, all equilateral triangles have the same shape, and so do all cubes. In applications, bodies rarely have exactly the same shape within measure- ment error. In such cases the variation in shape can often be the subject of statistical analysis. The last decade has seen a considerable growth in interest in the statis- tical theory of shape. This has been the result of a synthesis of a number of different areas and a recognition that there is considerable common ground among these areas in their study of shape variation. Despite this synthesis of disciplines, there are several different schools of statistical shape analysis. One of these, the Kendall school of shape analysis, uses a variety of mathe- matical tools from differential geometry and probability, and is the subject of this book. The book does not assume a particularly strong background by the reader in these subjects, and so a brief introduction is provided to each of these topics. Anyone who is unfamiliar with this material is advised to consult a more complete reference. As the literature on these subjects is vast, the introductory sections can be used as a brief guide to the literature.
 
Customer ReviewsSubmit your own review
 
To tell a friend about this book, you must Sign In First!